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Abstract

This paper is devoted to the analysis of elastic properties of anisotropic laminas using the so-called polar repre-
sentation method: this is an effective mathematical tool to analyse two-dimensional elastic problems. By this method,
the authors have been able to find a particular class of solutions to some special inverse problems concerning laminates
made by anisotropic layers. The properties of these solutions are described and discussed, along with some general
results. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Fibre reinforced composite materials are more and more used in modern engineering, specially under the
form of laminates for high performance applications. Evidently, the presence of a reinforcement in an
isotropic matrix results in a general anisotropy for laminas; laminates obtained by superposing laminas
with different orientations are then, in general, anisotropic as well, and their analysis by the classical
laminated plate theory (CLPT) needs the transformation of elastic properties of laminas by rotation. This
transformation, though well known, is rather cumbersome, because it involves the fourth powers of trig-
onometric functions. Naturally, this condition is an obstacle to analytical manipulations, similar to those
which occur in treating inverse problems for laminates; again, the complication of formulas can hide some
mechanical properties.

To overcome all this, the polar representation method of plane elasticity tensors can be used. This
method was introduced by Verchery as early as 1979, and successively it has been developed by Verchery
and co-workers (1986-1999) [Grédiac et al., 1993; Kandil and Verchery, 1988, 1990; Vannucci et al., 1999;
Vannucci and Verchery, 1999; Verchery, 1999; Verchery and Gong, 1999; Verchery and Vong, 1986] it is
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very similar to that presented by Tsai and Pagano (1968); see also Jones (1975) and Grédiac (1996). In the
theoretical framework of plane stress state, which is at the basis of CLPT, the polar method can be usefully
used; its main advantage consists in the fact that material and frame rotations are easily expressed, giving
the scientist much simpler equations than those obtained by Cartesian transformations.

Another important feature of the method is the physical meaning of tensor polar components: in the
case, for instance, of the elastic tensor, these are invariant parameters directly representing the symmetries
of a given material. So, by polar components it is possible to distinguish at a glance the kind of anisotropy
of a lamina, independently on the reference frame where its elastic moduli are known.

In designing laminates, it is well known that, generally speaking, the in- and out-of-plane behaviours will
be coupled, and the laminate will exhibit different elastic properties in membrane and bending for each
direction. No general solution is known today to counter these effects; normally, to obtain uncoupled
laminates, symmetrical stacking sequences are used, but this is only a sufficient and rather limiting rule, not
a necessary one, as already shown by Caprino and Crivelli-Visconti (1982). The second effect is often
neglected by designers.

In this paper, the CLPT equations are briefly recapitulated, and then written in the polar method
context; we also give the rules for obtaining the tensors describing elastic properties of a laminate obtained
by superposing and perfectly bonding together two different laminates. Next, we consider the possibility of
finding uncoupled laminates, or laminates having the same elastic characteristics in membrane and bending,
and finally the existence of laminates having both these properties, the so-called quasi-homogeneous lami-
nates; these are three special inverse problems concerning the design of anisotropic laminates. The exis-
tence of a particular class of solutions common to the above mentioned inverse problems is shown; the
authors have called qguasi-trivial these solutions, to signify the fact that there is no need to directly solve the
governing equations to find them. Finally, the properties of these solutions are illustrated, and some general
results are shown.

2. Recall of the classical laminated plate theory

The CLPT, (see Jones, 1975; Tsai and Han, 1980; Tsai, 1985) provides the tool for the mechanical
analysis of laminates. Let us consider a laminate composed of a given number, n, of anisotropic laminas,
perfectly bonded together. In the hypothesis of linear elasticity, for the case of a plane state of stress,
stresses and strains are related by the generalised Hooke—Duhamel law, which, in a contracted form, is

¢ = Qs — 1), (1)
where Q is the plane stress stiffness tensor. The inverse of Eq. (1) is
¢ = So + 10, (2)

S = Q! being the plane stress compliance tensor. For a linear variation of temperature across the thickness
of the laminate,

T =10+ A1z, (3)

in-plane forces and bending moments are linked to middle-plane strains and curvatures by the classical
relations

N = A"+ By — U -2

At

\%
h )

At (4)
M =Be’” + Dy — 70V — 27W.

Hereon, N and M are the tensors of in-plane forces and bending moments, €° is the tensor of in-plane
strains for the middle plane, y is the tensor of curvatures, 7, is the difference of temperature of the middle
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plane with respect to a no-strain state, At is the difference of temperature between the upper and lower face,
and / is the total thickness of the plate. It must be remarked that these relations are correct only if the
different layers that compose the laminate share the same thermal properties, which is the case, of course, of
laminates composed of identical plies. The fourth order tensors A and D describe respectively the in- and
out-of-plane behaviour of the plate, while B takes into account the coupling between these two behaviours.
In other words, if B is not the null tensor, the laminate is said to be coupled, that is for an in-plane effort it
will exhibit also curvatures, while for a pure bending state, the middle plane will have non-null strains. It
must also be remarked that, in general, tensors A and D are not equal; this fact tells us that for membrane
and bending the laminate behaves as two different homogeneous plates. The second order tensors U, V and
W play the same role as A, B and D respectively, as far as the efforts produced by thermal strains are
concerned. The above tensors are given by the following relations:

A= Qi) (= — ),

k=—p

B=1 Y Qo0 -2 ). (5)

k=—p

where Q,(0;) is the stiffness tensor of the kth ply, whose material frame (the frame in which the elastic
components of the material are known) forms the angle J; with the global reference frame of the laminate;
n=2p if even, n = 2p+ 1 if odd; z are the distances of the interfaces from the middle plane. For our
convenience, we have numbered the interfaces in a somewhat unusual but effective way, see Fig. 1; in this
way it is, for the case of layers of identical thickness 4 = h/n,

Zk:%hL; Zr—1 :%h]_, forn:2p+l,
Zy = khL, Zk—1 = (k — l)h]_ if k> 0, and n = 2p, (6)
Zy = (k + 1)hL, zio1 =khy if k< 0, and n = 2p
Again,
p

U= B8z —z),

k==p

1 p
V=3 /Z Bi(34) (z = ziy) (7)

1 pp
W= 3 kz [)’k(ék)(Z;f - 2}11)7

=P

A

P
k %
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Fig. 1. General sketch for the numbering of layers and interfaces.
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where B,(J;) is the second order tensor defined, for the kth layer, by
By () = Qi (Sr)ou (), (8)

o, (0;) being the tensor of thermal expansion coefficients of the kth ply; of course, both f, and a; must be
expressed, as is Q,, in the global reference frame of the plate.

The above equations, which are in tensor form, are usually written in matrix form or with Cartesian
components; any linear transformation of co-ordinates can be applied to them. We will show in the next
paragraph how the polar method makes possible explicit formulation, including rotation angles, which has
no equivalent in classical literature.

3. Superposition of laminates

Let us consider two different laminates, denoted 1 and 2; it can be easily shown that the laminate ob-
tained by superposing these two, perfectly bonded together, has elastic properties described by the fol-
lowing tensors (#; and A, are the thickness of laminates 1 and 2):

A= Al + A27
hy hy
B:B1+B2—EA1+EA27 (9)
W h?
D=D;,+D, — B, + 1B, +2A; +-1A,.

4 4

Similar formulae, which are a direct consequence of the composition laws of elastic tensors, Egs. (5) and
(7), can be written also for the thermo-elastic part.

4. The classical laminated plate theory using the polar method

We recall, (Verchery, 1979) that in plane elasticity, the three Cartesian components of a symmetric
second order tensor L can be expressed by three other quantities, a scalar 7, a modulus R and an angle &:

Ly =T+ Rcos29®,
Ly =T —Rcos2d, (10)
L12 = Rsin2d.

The reverse equations of Eq. (10) can be expressed in complex form:

_Lu+Ln
2 (11)
2R821(15 = L11 — L22 + 2iL12.

T

T, R and @ are the polar components of L; indeed, formulas (10) and (11) are the algebraic transposition of
Mohr’s circle geometric construction.

For the case of a fourth rank tensor L having the typical symmetries of elasticity, its six Cartesian
components are a function of six other parameters, 7,, 77, Ry, R;, @y and &;:
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Ly = Ty + 2Ty + Rocos4®@y + 4R cos 2P,
Ly = =Ty + 2Ty — Rycos4®,,

Ly = Ty + 2T + Rycos 4Py — 4R cos 29,
Ly, = Ty — Rycos 4Py,

Li1p = Rysin4®, + 2R, sin 2y,

Ly = —Rysind®y + 2R sin 2.

The reverse equations of Eq. (12) are, in complex form,

8Ty = Litn + Loy — 2L1120 + 4L1212,

8Ty = L1111 + Ly + 2Ly 129, (13)
8Roe"™ = Lyt + Loy — 2L1n — 4L1o1a + 4i(Lina — Looa),
8R, € = Liny — Loy + 2i(Lina + Loona).

Parameters Ty, 7| are scalar, Ry and R; moduli, @, and @, polar angles. The most important feature of
polar components, is that for a rotation 0 of the reference frame, 7, R, Tj, T, Ry, R; and the difference
@, — @, are invariant, while the polar angles @, @&, and &, are simply changed into ® — 0, &, — 6 and
@, — 0. This is a real advantage in the case of laminates, where laws (5) and (7) depend upon tensors ex-
pressed for each layer in a frame rotated through an angle §; with respect to the material frame.

The polar parameters give account of the elastic symmetries of the material composing a lamina: in fact,
it appears immediately from Eqgs. (10) and (12), and for what said above about a change of reference frame
by the polar method, that a material will be isotropic if and only if R = 0, for a second rank tensor, or
Ry = R, =0, for a fourth order tensor. So, 7, Ty and T} represent the isotropic part of L, while R, Ry, R;, @,
@, and @, its anisotropic part. As said in the previous section, their difference @y — @, is an invariant
parameter, and namely it provides the orthotropy condition: L is orthotropic if and only if &y — &, = kn/4,
with k integer (Verchery, 1979, 1999).

The polar method can be effectively used to express the components of the six tensors introduced pre-
viously: a quick glance at Egs. (11) and (13) shows that the polar components of these tensors will be
found using the same laws (5) and (7) that apply for the Cartesian components. If Ty, Ti,, Ro,, Ry,
&, and @, indicate the polar components of the tensor Q, and 7}, R, and @, those of tensor B, the results
are:

tensor A:

P
Ty = ZTOk(Zk — Zk_1),

k=—p

p
T, = Zle(Zk — Zk1),

k=—p

P

D 4Py 4i(Poi+0

Ryeti® = E Roke (Pox A)(Zk_zkfl);
k=—p

_ P )
Rl eZIlP] — § le 621(¢1k+(5k)(zk _ Zkfl),
k=—p
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tensor B:

k=—p
~ 1 & 5
T1=§ le(Zk_Zi—l)7
1 ki};ﬁ (15)
IAQO HPo _ 3 Z Rq, e4i(Por+3y) (Zi _ Zi71)7
k=-p

~ s 1 & .
2iP; __ § : 20(P1p+0k) (2 2
Rle —2 lee (Zk Zk—l)’

tensor D:

k=—p
~ 1 &
Tl = § Z le (Zk _Zk71)7
k=-p
o | 2 ' N (16)
R()e4l% — g Z R()k e4l((l’0k+()k) (Zz —Z/z,l),
k=-p
~ L 1 & . .
Rie™ = 2 37 Ry O 23 ,),
k=—p
tensor U:
. »
T=> Tilz—z)
k=—p
o , - (17)
ReZl(D _ Z Rk 621(¢k+bk)(zk 7Zk71)7
k==p
tensor V:
~ 1 & )
T = 5 Z Tk(zk _Zk—l)’
k=—p
- | . (18)
Rl — 5 Ry Q2(Pitdr) (Zz Zi_1)7
k=—p
tensor W:
7 1 & 3 3
T = g Z Tk(Z}( _Zkfl)’
e (19)
e 1 & L
ReZl¢ — g Z Rk eb(‘ﬁ}ﬂrdk) (le _ 2271)7
k=—p

As announced above, and unlike Cartesian formulas, these laws contain explicitly the variations of the
quantities with the angles J;.
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Once the polar components of a laminate are known, it is an easy task to come back to the Cartesian
ones, by Egs. (10) and (12), not only for the reference frame, but also for each direction rotated by an angle
0 with respect to the latter.

5. Formulation of three inverse problems concerning laminates

In the preceding paragraph we have shown a simple, entirely computational utilisation of the polar
method in laminate analysis; however, the method finds its best application in theoretical investigations,
where the analytical simplifications given by the method itself allow the treatment of more complex
problems; in this sense, we draw our attention now to three connected inverse problems concerning lami-
nates.

We have already introduced, in the preceding paragraph, two circumstances which are common in
laminate designing: the first one is coupling. We try to give a general answer to the following question:
which are the necessary and sufficient conditions to have uncoupled laminates? In the introduction, we have
already said that normally, to have an uncoupled laminate symmetrical stacking sequences are chosen; but
this is only a sufficient, and rather limiting, condition; Caprino and Crivelli-Visconti (1982) and subse-
quently Kandil and Verchery (1988), have shown some counter examples of uncoupled non-symmetrical
laminates.

The second circumstance is the fact that thermo-elastic properties are different in membrane and
bending: in other words, the laminate behaves in the two cases as if it were constituted by different ma-
terials. We look for the conditions that give laminates having the same properties for in- and out-of-plane
behaviour. The interest in this kind of laminate is due to the fact that in-plane properties, see first part of
Egs. (16) and (17), do not depend upon the position of a layer in the stacking sequence, and so they are
much simpler than the equations describing the bending behaviour. Then, if a laminate has the same
bending behaviour as in tension, in an optimisation phase only the latter needs to be considered, which is
much easier to handle in computation: bending properties will be automatically optimised.

A third case that we have considered is the possibility of having laminates that are uncoupled and that
have at the same time the same properties in membrane and bending; in other words, we look for laminates
having the two preceding requirements; we will call these laminates quasi-homogeneous. Kandil and
Verchery had already considered this possibility, but they had called quasi-homogeneous laminates only
those corresponding to the second case, with no uncoupling condition.

The above three cases correspond to three different but linked inverse problems concerning anisotropic
laminates, and we want to write their governing equations. The conditions to have uncoupled laminates are
simply

B=0, V=0 (20)

To express the conditions giving laminates with the same properties in membrane and bending, let us in-
troduce the following tensors:

cla 12y

hew 51

z_lu_12y @)
h B

where 1/h and 12/h* are the CLPT homogenising coefficients for tensors describing membrane and bending
behaviour; in this way the second inverse problem is governed simply by the conditions below:

C=0 Z=0. (22)



9288 P. Vannucci, G. Verchery | International Journal of Solids and Structures 38 (2001) 9281-9294

It should be noted that the uncoupling condition can be posed directly upon the laminate’s coupling
stiffness tensors B and V; instead, for the case of laminates having equal behaviour in tension and bend-
ing, the condition must concern normalised tensors, which are not the stiffness tensors of the plate. Such
normalised tensors can be regarded as describing the behaviour of an equivalent material, by which is
composed a plate having the same thickness and stiffness of the laminate.

Finally, the third problem is evidently governed simultaneously by Egs. (20) and (22). Egs. (20) and (22)
require all the components of the tensors to be null, evidently in the polar method too, and they are
completely general, that is they are valid for laminates composed of any kind of layer, not necessarily
identical.

A quick glance at Eq. (9) is sufficient to see that, in general, the properties B =0 and C = 0 are not
preserved in the superposition of two laminates. Nevertheless, let us consider two uncoupled laminates,
with the same in-plane properties, that is

Al = thL7 A2 = h2QL7 Bl = BZ =0. (23)

This is the case, for instance, of two laminates composed of the same elementary layer, and which have
stacking sequences able to respect conditions (23); Q. is the homogenised tension stiffness tensor. It is
evident from Eq. (9), that in such a case the laminate obtained by superposition will have

A=hQ,, B=0, (24)

where £ is the thickness of the final laminate, 2 = h; + h,; Eq. (24) shows that the laminate obtained by
superposition has the same equivalent properties of its two constituent laminates.

In addition, if these laminates are also quasi-homogeneous, the resulting laminate will be so; this can be
easily shown if we consider that quasi-homogeneity implies

2 3
D, = %Al = %QL,
(25)
b Ba B
TR nr
Substituting Egs. (23) and (25) into the third part of Eq. (9) gives directly
h3
D= EQL7 (26)

which confirms what was stated above: the laminate obtained by superposition is quasi-homogeneous.
Clearly, what is true for the superposition of two laminates can be easily extended to the case of the
superposition of more than two laminates.

6. Laminates composed by identical layers

In order to have general solutions to the three problems mentioned, we make now the hypothesis that all
the plies of the laminate be identical, that is composed by the same material and of the same thickness
hL = h/l’l

This assumption leads to a general simplification of Eqgs. (14)—(19), because polar components of the
plies are the same, say Ty, 71, Ro, R1, @9, @1, T, R and @; one can immediately see that in this case it is,

?0:?1:?:0, (27)

and, if we consider membrane and bending stiffness tensors, homogenised as in Eq. (21),
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To=To =T,
71:T1:Tl, (28)
T=T-=T.

Egs. (27) and (28) show that the isotropic part of the stiffness tensors as well as the spherical part of
thermo-elastic tensors, automatically satisfy the governing equations for the three problems; so, only the
anisotropic, for stiffness tensors, and deviatoric part, for thermo-elastic tensors, play a role in the defined
problems; this is a consequence of having assumed laminates made of identical plies. In addition, ho-
mogenised T;, 7} and T components for membrane and bending of the laminate are identical to their
counterparts of the single ply.

Relations (27) and (28) are completely general, valid for each kind of material composing the elementary
layer; in addition, it can be easily shown, using Egs. (14)—(16), that for cross-ply laminates it is also

RO = ﬁO = ROa
@0 = djO = (po, (29)
Ry =0.

It is worth noting that similar relations do not hold for the thermo-elastic part, because in this case R, R and
R depend upon quantities which vary as 20, just like R, R 1 and Rl, and not as 40, like Ry, RO and Ro

Again from Eq. (14) to Eq. (19), substituted in Egs. (20) and (22), we have the governing equations of the
three inverse problems; a laminate will be uncoupled if and only if

~ p .
Ryet® =0 = Z 4o (zﬁ — Zifl) =0,
k=-p
(30)
R ¥ —0 = Z (- z_y) =0,

k=-p

for the elastic part, and
~ p ‘e
R =03 e™(f-7,) =0, (31)

for the thermo-elastic part. A laminate will have the same properties for in- and out-of-plane behaviour if
and only if

1 12 ~
hR e4llp[) — h R e4llp[) = _ Z e4l(3A _ h3 Z e4lbk k _Zk 1)7

k*—p k=—p

1 12 ~ (32
o 2iP 2id 2i0;, 219,
ZRIC ! = — R e =~ k;_pe k = k;pe 2 —z),
for the elastic part, and
1o 2@ 12~ 2id 1 2i 43 2idy (3 3
SR = SR = - ;}p: =5 ;:,,,: e (2 — 2 ), (33)

for the thermo-elastic one. Finally, a laminate will be quasi-homogeneous if and only if Egs. (30)—(33) hold
at the same time.
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The above equations show that the thermal problems are a sub-part of the elastic problem: a laminate
which is a solution of one of the problems for the elastic part will be a solution also for the thermo-elastic
one; the contrary is not true, in general; so, we will consider only the elastic part, that is, Egs. (30) and (32),
and we will ignore Egs. (31) and (33). By simple manipulations, Egs. (30) and (32) can be rewritten as:

bk(e4i5k _ 6415,/,) — O’
1

=~
Il

P
Z bk(e2i¢3k _ eZié,k) — 0,
=1
» ) ) ) (34)
ch(e4lbk + e41(),k) + o e41()0 — 0’
=1
p . g Y .
ch(ezmk + ezm,k) + o e21(30 =0.
k=1
In Eq. (34), coefficients b; and ¢, are defined by
c=plp+1) =3k, b=k forn=2p+1, (35)

a=@p-Dp+1)=3k(k—-1), c=0, b =2%k—1 forn=2p.

Clearly, first and second part of Eq. (34) account for the problem of uncoupled laminates, third and
fourth part of Eq. (34) the problem of laminates with same properties in membrane and bending, and all
together the problem of quasi-homogeneous laminates. Some remarks can be made: firstly, the structure of
the equations: there are two groups of coefficients and two kinds of equations: one which depends upon 2y,
and the other upon 44;, being J,, the orientations of the plies with respect to the global reference frame of
the laminate, the true variables of the problems. Secondly, the equations do not depend upon the elastic
properties of the plies: this is another consequence of the hypothesis of identical plies, and it was to be
expected. Thirdly, the trivial solution, that is a solution were all the layers have the same orientation, is
really a solution of the equations, as can be quickly verified. Finally, and most important, it must be noted
that a general solution of Eq. (34), that can be easily put in real form, is at present not available, and for a
given number of plies, a solution must be sought by a numerical method. Naturally, this leaves some
unresolved questions, such as the number of different solutions for a given laminate.

7. Quasi-trivial solutions

Numerical methods can resolve, at least approximately, the problem of finding a solution for a given
number of plies, but they do not constitute a general method; in addition, they do not provide an exact
solution, if any exists. So, if exact solutions and a general method are looked for, numerical methods cannot
be used.

Fortunately, Eq. (34) have a characteristic structure which suggests the existence of particular solutions
rather easy to be found. In fact, if we look at coefficients b, and ¢, Eq. (35), we discover that the former are
anti-symmetric and linearly variable along the thickness of the plate (that is why each symmetric stacking
sequence is automatically uncoupled), while the latter have a symmetric and quadratic variation. But, and
most importantly, the sum of coefficients by, as well as the sum of coefficients ¢, is null. So, a sufficient
condition to have a solution is that the stacking sequence be composed of groups of layers with the same
orientation, in such a way that the sum of the coefficients for each group is null. If it is the sum of coefficients
b, that is null, the laminate is uncoupled, if it is the sum of coefficients ¢, it has the same properties for
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membrane and bending, and if both the sums are null, the laminate is quasi-homogeneous. We have called a
group of layers having the same orientation and null sum a saturated group, and quasi-trivial a solution
composed of saturated groups, to indicate the fact that the governing equations need not to be solved di-
rectly to obtain it. In fact, quasi-trivial solutions are found by arithmetical combinations of the coefficients.
It must be pointed out that a group is saturated independently from the orientation of the plies, which is not
determined; this constitutes the most interesting properties of quasi-trivial solutions from a mechanical point
of view, because for the same quasi-trivial solution, there are infinite different laminates, with elastic
properties determined by the orientation of the groups; these orientations can be freely fixed by the designer
to obtain specific elastic characteristic, always having a laminate with the property of being uncoupled, or
with the same behaviour in membrane and bending or quasi-homogeneous.

The authors have used the preceding arguments to make an automatic algorithm able to find all quasi-
trivial solutions for a given laminate, and for each one of the preceding inverse problems. In this algorithm,
other properties of quasi-trivial solutions have been used, and namely the fact that each quasi-trivial so-
lution with g different orientations descends from another with g — 1 groups. In other words, let us suppose
that we dispose of a solution with g groups; this means that the gth group, which is saturated, can be
included in each one of the remaining g — 1, always obtaining a solution, evidently with g — 1 different
orientations. To do this, it is sufficient to orient the gth group as another one, operation always possible
thanks to the indeterminacy of the orientation of each group. If all the possible solutions with g — 1 ori-
entations have then been found, to find all the solutions with g groups it is sufficient to look for saturated
subgroups in each one of the g — 1 different groups. As a consequence of this property, if a laminate has not
quasi-trivial solutions with g different orientations, it will not have quasi-trivial solutions also for more than
g orientations; this circumstance gives a criterion for stopping the search procedure for quasi-trivial so-
lutions, but at the same time it does not permit an a priori prediction of the number of quasi-trivial so-
lutions for a given laminate.

It can be shown that the higher number of different saturated groups is equal to [(n + 1)/2] for the case
of uncoupled laminates (the symbol [ ] denotes here the integer part), it is [n/2] 4 1 for the case of laminates
having the same properties in membrane and bending, and it is less than [n/2] for quasi-homogeneous
laminates.

In the preceding paragraph we have recalled that a solution for thermo-elastic properties is not always a
solution for elastic properties. Nonetheless, the set of quasi-trivial solutions for the elastic case coincides
perfectly with the set of quasi-trivial solutions for the thermo-elastic case. This is due to the fact that in Eq.
(34) there are only two different groups of coefficients, b, and ¢, that appear both in linear and quadratic
equations, and to the same nature of quasi-trivial solutions, which are solutions where simply one looks for
groups of layers having a null sum of these coefficients.

All quasi-trivial solutions are general solutions, in the sense that they do not depend upon the kind of
material composing the elementary layer. One can ponder if additional properties of the latter can induce a
greater number of quasi-trivial solutions. In the case of layers having square symmetry of elastic properties,
the answer is no. In fact, in this case for each layer the condition of square symmetry is given by (Verchery,
1999)

R, =0, (36)

which transforms the second and fourth part of Eq. (34) into identities. Nevertheless, the remaining, the
first and third part of Eq. (34) again contain coefficients b; and ¢;, and so the search of saturated group does
not change, that is the number of solutions does not increase, for each one of the three problems con-
sidered. We note that condition (36) gives immediately that a laminate composed of any kind of layers, but
all having square symmetric elastic properties, will be square symmetric for each behaviour, that is, it will
have (Vincenti et al., 2001)
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R =R, =R, =0, (37)

once more the polar method shows its effectiveness in the analysis of plane elastic properties.

After considering the great number of quasi-trivial solutions, see the following paragraph, the question
arises if these are the only possible solutions; the answer is no. In fact, in order to find some non-quasi-trivial
solutions, let us pose the following rather natural question: is the superposition of two quasi-trivial lami-
nates, with respect to a given property, still a quasi-trivial laminate having the same property? Again, the
answer is no, in general: indeed, conditions (23) are valid, for two given stacking sequences, only for special
orientations of the saturated groups, and for a superposition of the two laminates which corresponds to that
which superposes exactly the reference frames of the two composing laminates. In other words, the super-
posed solution is not quasi-trivial, because it depends upon particular and fixed orientations of the layers. If
the two composing laminates are also isotropic, the angle of superposition has no influence; this shows the
existence of another type of solution, that is, laminates composed by subgroups with fixed orientations, but
with a degree of freedom which is the angle of orientation of one group with respect to another. Of course,
other types of solutions can exist, for instance solutions where there is a functional relation between layer
orientations: Vincenti et al. (2001) have shown the existence of some non-quasi-trivial solutions for laminates
composed of identical layers having an elastic square symmetry, namely for the case of a 4- and 5-layer
uncoupled and for a 6-layer quasi-homogeneous laminate. In such cases, a functional dependence of ori-
entations has been found. This circumstance shows the existence of solutions depending on particular
symmetries of the basic layer, but, as said above, these ones cannot be of quasi-trivial type. All these con-
siderations are sufficient to show the non-uniqueness of quasi-trivial solutions.

A final remark is reserved for the search algorithm of quasi-trivial solutions: for what said above, it is
apparent that this algorithm executes only a search of null sums of coefficients; the computing phase con-
cerns then only integer numbers and is very quick and efficient; this algorithm provides all the quasi-trivial
solutions for a laminate with n layers. In the following paragraph, we present some general case results.

8. General results and examples

We have examined a certain number of different cases, and using the above mentioned algorithm we
have constituted a data base of quasi-trivial solutions. Some examples of these are shown below (the
number of layers of the same saturated group is indicated in brackets):

7-layer uncoupled laminate: [a b b ¢ a a b] (3/3/1),

8-layer laminate having identical bending and tension behaviour: [a a b a b a b b] (4/4),
8-layer quasi-homogeneous laminate: [a b b a b a a b] (4/4),

20-layer quasi-homogeneous laminate: [abccdbdbcdabcacabbcd (4/6/6/4).

Letters a, b, ¢, d are labels that denote layers belonging to the same saturated group, in the stacking se-
quence; the orientation of each group is not fixed, being up to the designer.

In Table 1, we show the results of our search; in numbering the solutions, we have not taken into account
for those that can be considered as mechanically or mathematically identical. In fact, let us consider two
solutions like [a b c cbaland [a ¢ b b ¢ a ], or two others like [a b b a c] and [c a b b a]; clearly, they are
mechanically the same solution (the second case is simply the first upside down). Again, a solution like [a b
b b a] can be considered as derived from [a b ¢ ¢ b a], simply giving to the saturated group labelled ¢, the
same orientation as that labelled b (this operation is always possible, having quasi-trivial solutions no pre-
determined orientations). In this last case, the two solutions are mechanically different but mathematically
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Table 1
Number of independent quasi-trivial solutions for the three inverse problems

Number of plies

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
B=0 11 1 2 2 4 511 15 41 57 174 275 1033 1639
c=0 2 1 4 1 8 2 2 14 34 3 119 52 76 445 617
B=C=0 0 0 0 1(1) 1 0 0 32 1 4 2D 4 8 (1) 23 5

the same. We call independent a solution which is mechanically and mathematically distinct; one can easily
find mechanically distinct solutions simply numbering by a growing index the saturated groups (that is, the
first in the sequence by «, the second by 5 and so on), while one solution is mathematically distinct if no
quasi-trivial solution with a greater number of saturated groups derives from it. Only independent solutions
are listed in Table 1, though the algorithm finds all the possible solutions, whose number is much higher,
and then it selects the independent ones.

In brackets, we have reported the number of symmetric solutions; in the case of uncoupled laminates
(B = 0), there is always one and only one independent symmetric solution: it is the solution obtained by
changing layer orientation at each symmetric pair of layers. In the case of laminates having the same
properties in membrane and bending, (C = 0), there are no symmetric solutions and also in the last case of
quasi-homogeneous solutions, there are only a few symmetric solutions. This rather surprising fact shows
that not only non-symmetric solutions exist, but that they are in greater number than the symmetric ones,
which indeed constitutes an exception and not the rule, as generally thought. This fact highlights the rather
limited panorama of symmetric solutions.

9. Conclusions

The capacity of the polar method to give rapid and synthetic indications about symmetries of elastic
properties for a given material, still remains when passing to laminates, with all the advantages in for-
mulating the equations of the CLPT: elastic properties of the laminate expressed by formulas where the
dependence by the orientation of the layers appears explicitly, governing equations of the three considered
inverse problems written in a simple manner, along with the possibility of easily finding a particular class of
solutions, that we have called quasi-trivial, to these problems. In addition, we have shown, thanks to
composition rules for superposed laminates, up till now unknown in the literature, that quasi-trivial so-
lutions are not the only possible ones. The very important characteristic of quasi-trivial solutions, that is to
have a-priori undetermined orientations of the plies, opens the way to possible optimisation procedures on
the set of the solutions.

This paper has presented an application of the polar method to some inverse problems concerning
laminates. Clearly, this method has other applications: in fact, the polar method is purely a mathematical
technique, not a mechanical model, and it can be employed whenever phenomenon is described by two-
dimensional tensors. We have presently in progress applications to various problems in the field of com-
posites, such as higher order plate theories, plate buckling, plate vibrations.
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